A Bootstrap Test for the Comparison of Nonlinear Time Series - with Application to Interest Rate Modelling
نویسندگان
چکیده
We study the drift of stationary diffusion processes in a time series analysis of the autoregression function. A marked empirical process measures the difference between the nonparametric regression functions of two time series. We bootstrap the distribution of a Kolmogorov-Smirnov-type test statistic for two hypotheses: Equality of regression functions and shifted regression functions. Neither markovian behavior nor Brownian motion error of the processes are assumed. A detailed simulation study finds the size of the new test near the nominal level and a good power for a variety of parametric models. The two-sample result serves to test for mean reversion of the diffusion drift in several examples. The interest rates Euribor, Libor as well as T-Bond yields do not show that stylized feature often modelled for interest rates.
منابع مشابه
Functional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price
Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...
متن کاملa Comparison Study Between the Joint Probability Approach and Time Series Rainfall Modelling in Coastal Detention Pond Analysis (RESEARCH NOTE)
In tidally affected coastal catchments detention pond should be provided to store flood surface water. A comparison between the full simulation approach based on the joint probability method and time series rainfall modeling via the annual maximum of pond level was undertaken to investigate the assumptions of independence between variables that are necessary in the joint probability method. The...
متن کاملA Novel Fuzzy Based Method for Heart Rate Variability Prediction
Abstract In this paper, a novel technique based on fuzzy method is presented for chaotic nonlinear time series prediction. Fuzzy approach with the gradient learning algorithm and methods constitutes the main components of this method. This learning process in this method is similar to conventional gradient descent learning process, except that the input patterns and parameters are stored in mem...
متن کاملSemiparametric Bootstrap Prediction Intervals in time Series
One of the main goals of studying the time series is estimation of prediction interval based on an observed sample path of the process. In recent years, different semiparametric bootstrap methods have been proposed to find the prediction intervals without any assumption of error distribution. In semiparametric bootstrap methods, a linear process is approximated by an autoregressive process. The...
متن کاملAN ANALYTICAL SOLUTION FOR DIFFUSION AND NONLINEAR UPTAKE OF OXYGEN IN THE RETINA
A simple mathematical model of steady state oxygen distribution subject to diffusive transport and non- linear uptake in a retinal cylinder has been developed. The approximate analytical solution to a reaction- diffusion equation are obtained by using series expansions. The computational results for the scaled variables are presented through graphs. The effect of the important parameters (1) d...
متن کامل